Adjusting Shape Parameters Using Model-Based Optical Flow Residuals
نویسندگان
چکیده
We present a method for estimating the shape of a deformable model using the least-squares residuals from a model-based optical flow computation. This method is built on top of an estimation framework using optical flow and image features, where optical flow affects only the motion parameters of the model. Using the results of this computation, our new method adjusts all of the parameters so that the residuals from the flow computation are minimized. We present face tracking experiments that demonstrate that this method obtains a better estimate of shape compared to related frameworks.
منابع مشابه
Deformable Model-Based Shape and Motion Analysis from Images using Motion Residual Error
We present a novel method for the shape and motion estimation of a deformable model using error residuals from model-based motion analysis. The motion of the model is first estimated using a model-based least squares method. Using the residuals from the least squares solution, the non-rigid structure of the model can be better estimated by computing how changes in the shape of the model affect ...
متن کاملComputation Optical Flow Using Pipeline Architecture
Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...
متن کاملHuman Limb Extraction Based on Motion Estimation Using Optical Flow and Image Registration
We propose a method for extracting human limb regions by the combination of optical flow-based motion segmentation and nonlinear optimization-based image registration. First, rotating limb regions with rough boundaries are extracted and motion parameters are estimated for an approximated model. Then the extracted region and estimated parameters are used as initial values for nonlinear optimizat...
متن کاملExtracting Human Limb Region using Optical Flow and Nonlinear Optimization
We propose a method for extracting human limb regions by combination of optical flow based motion segmentation and nonlinear optimization based image registration. First, rotating limb regions with rough boundaries are extracted and motion parameters are estimated for an approximated model. Then the extracted region and estimated parameters are used as initial values for nonlinear optimization ...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 24 شماره
صفحات -
تاریخ انتشار 2002